Ugrás a tartalomhoz Lépj a menübe
 


A Hold

Hold a Föld egyetlen holdjának neve. A Földtől vett átlagos távolsága 384 402 kilométer, ami nagyjából a Föld átmérőjének 30-szorosa — más mértékegységekben 0,002 CsE vagy 1,3 fénymásodperc (a Nap visszaverődő fénye 1,3 másodperc alatt jut el róla a földi megfigyelőhöz). Átmérője 3476 kilométer, ami hozzávetőleg negyede a Földének. Ezzel a Hold a Naprendszerötödik legnagyobb holdja a Jupiter három holdja, a Ganümédész, a Kallisztó és az Io, valamint a Szaturnusz Titán holdja után.hold-1.jpg

A felszíni nehézségi gyorsulás (és így a testek súlya) körülbelül hatoda a földinek, így a rajta járó űrhajósok a 80–90 kg-os űrruhában is könnyedén mozogtak, ugráltak. A légkör hiánya miatt égboltja nappal is teljesen fekete. Kötött keringése miatt mindig ugyanaz az oldala fordul a Föld felé, és az innenső oldalán álló holdi megfigyelő (például az Apollo űrhajósai) számára a Föld mindig ugyanott látszik állni az égen (persze bolygónk ugyanúgy fázisokat mutatva elfogy és megtelik, mint a földi égen is a Hold). A Holdról azonban a Földnek nem mindig ugyanaz az oldala látszik.hold-2.jpg

 

 

Forrás: https://hu.wikipedia.org/wiki/Hold

 

A legkorábbinak George Darwin kiszakadás-elmélete számít, amely szerint a Naprendszer kialakulásának kezdetén a még olvadt állapotban levő Föld olyan gyorsan forgott tengelye körül, hogy egy nagy anyagcsomó szakadt ki belőle (vélhetően a mai Csendes-óceán térségéből), amely hamar gömb alakot vett fel és pályára állt a maradék anyabolygó körül. Ám ez az elmélet olyan gyors forgást feltételez, amilyen sohasem jellemezte a Földet, ráadásul a megjelölt helyszín fiatal kőzetei nem erősítik meg egy olyan geológiai esemény megtörténtét, mint a kiszakadás. Egy másik jelentős, egykori elméletnek tekinthető a befogás-elmélet, amelynek hívei szerint a Hold valahol a Naprendszer más fertályán keletkezett, pályája keresztezte a Föld keringési pályáját, majd egy közeli találkozás során a nagyobb égitest befogta a nagyobb gravitációjával. Azonban ennek a hipotézisnek a működőképességéhez igen valószínűtlen feltételek különleges együttállása kellett volna, sokkal valószínűbb, hogy egy ilyen találkozásnak ütközés, vagy a befogás ellenkezője (a Föld gravitációja más irányban parittyázta volna messze el a közeledő Holdat) lett volna a vége. A harmadik elmélet a két égitest párhuzamos kifejlődéséről szólt. Eszerint a Nap körüli akkréciós korongban egymás mellett két kis bolygócsírafejlődött a korong poranyagában és kissé aszimmetrikus ikerbolygót alkottak. Ám ez az elmélet a két bolygótest anyagösszetételének különbözőségén bukott meg (a Hold kőzeteiben kevés a víz és a vas). Mindhárom elmélet legnagyobb buktatója azonban az volt, hogy nem adott magyarázatot a Föld–Hold rendszerben meglévő impulzusmomentum kérdésére.

A végül bizonyított és ma elfogadott keletkezés-történeti elképzelés szerint valamikor a Naprendszer kialakulását követő 30-50 millió (de legkésőbb 100 millió) éven belül, nagyjából 4,527 ± 0,01 milliárd évvel ezelőtt egy hatalmas bolygóközi ütközés történt. Ebben a formálódó ős-Föld és egy Mars méretű bolygócsíra (melyet Theiának neveztek el) összeütközött, és az ütközés által kilökődött anyag állt össze előbb gyűrűvé, majd gömb alakú bolygótestté, a későbbi Holddá. Eszerint a Hold anyaga a Földből származik, ám jelentős mennyiségben lehet benne a becsapódó másik test anyagából is. A feltételezett becsapódás jól magyarázza, miért van a Holdnak méretéhez képest viszonylag kis, fémes magja, a két ütköző égitest magja ugyanis a Földön maradt, és a két köpeny könnyebb anyagának lerepülő szilánkjai képezték a Föld körüli gyűrűt. Mivel mindkét égitest megolvadt az ütközés során, részben mozgási energiájuk miatt, ezért anyaguk fajsúlya szerint rétegződött, a nehezebb elemek így a magba kerültek.hold-2.jpg

Később a két bolygótest együtt fejlődött tovább, bár a fejlődéstörténetük két önálló irányt vett. A Föld légkörénekmágneses mezejének és méretének köszönhetően mások voltak a felszínformáló erők, mint kísérőjén. A Holdon a napszél és a folyamatosan a felszínre záporozó testek bombázása alakította a felszínt, mivel a kisebb test hamarabb lehűlt és a vulkáni, vagy tektonikai aktivitás már a fejlődéstörténet igen korai szakaszában leállt. Éppen ezért a Hold földtani korszakait a meghatározó becsapódásokkal jelezzük, így különböztetünk meg Nectaris-korszakotImbrium-korszakotEratoszthenészi-kortKopernikuszi-kort.

A becsapódások mellett a késői nagy bombázás korszakát követően, az imbriumi-korban – 3,5-3 milliárd évvel ezelőtt – a vulkanizmus is komoly szerepet játszott a felszín kialakításában. A hatalmas, több száz kilométer átmérőjű medencéket kialakító becsapódások az adott helyeken nagyon levékonyították a kérget és így a vékony, töredezett kőzetrétegen át könnyen fel tudott törni a mélyből az olvadt kőzet. A hatalmas lávafolyásokbazaltfolyamai 100-200 millió év alatt feltöltötték a nagy becsapódásos medencéket és így megszülettek a holdtengerek, a marék. Az óriási becsapódási kráterek szélén felgyűrődött, összetöredezett kőzetlemezek pedig, miután magát a medencét és a lemezek réseit kitöltötte a láva, hegyláncokként maradtak hátra. A lávafeltörések közül a legutolsó az eddig bevettnek hitt 1 milliárd évvel szemben mintegy 50-100 millió évvel ezelőtt történhetett.[3]

 

 

 

 

Forrás: https://hu.wikipedia.org/wiki/Hold

 

 

A Hold rétegtana

A Hold volt az első olyan égitest, amelyre alkalmazták a rétegtan Földön kifejlesztett, de más égitestre kiterjesztett axiómáit (Shoemaker és mtsa, 1962, Wilhelms, 1970a, 1970b, Wilhelms és mtsa, 1971). A kőzettestek tulajdonságait, az átfedési viszonyokat először fotometriai úton, távcsöves fényképfelvételekről, majd űrfelvételekről állapították meg.

hold-4.jpg

 

 

 

A rétegtani térképező munka egyik összefoglalása a Hold rétegtani oszlopa, amit lépcsőzetes piramis formájában mutatunk be. Ebben fölsoroljuk a Hold fő rétegtani emeleteit, amelyek a kőzetképződés nagy korszakaival párhuzamosíthatók.

hold-3.jpg

 

 

 

A Holdon legfiatalabb képződményei a sugársávos kráterek (kopernikusziemelet), amiket lejjebb a még mindig fiatalosan tagolt morfológiájú, de már sugársáv nélküli kráterek (eratoszthenészi emelet) váltanak fel. Mindkét fiatalabb emelet rétegei többnyire csak kráternyi foltokban tűnnek fel, bár előfordulnak eratoszthenészi marék is (és a Tycho- vagy a Kopernikusz-kráter sávjai is messzire nyúlnak, amit különösen telihold idején láthatunk jól). A foltnyi rétegtani egységek alatt két, nagy kiterjedésű kőzettesteket alkotó emelet következik:

  • a fiatalabb az imbriumi, amit az Imbrium-medence alapján jelöltek ki,
  • az idősebb nektári emelet, amit a Nektár-medencéből írtak le.

Legalul a krátermezőkkel borított terravidékek prenektári emelete fekszik.

 
A Hold rétegtani emeletei

A Hold idealizált rétegtani piramisa. A rétegtani egységek föntről lefelé:

  • Kopernikuszi (fiatal, sugársávos kráterek),
  • Eratoszthenészi (fiatal, de sugársáv nélküli kráterek),
  • Imbriumi (az Imbrium-medence kialakulásától: kidobott takarók, mare elöntések),
  • Nektári (a Nektár-medence kialakulásától: medencék, márék),
  • Prenektári (minden korábbi kőzettest).

A Hold sztratigráfiai térképezése tette lehetővé, hogy az Apollo-programbanbegyűjtött holdkőzeteket elhelyezhessék az égitest fejlődéstörténetében.

 

Forrás: https://hu.wikipedia.org/wiki/Hold

 

Gravitációs mezeje

Kísérő égitestünk gravitációs mezejének fő sajátosságait az ún. masconokjelentik, azaz a Hold gravitációs mezeje nem homogén. A Hold körül keringő szovjet és amerikai szondák mérései meglepő módon tömegkoncentrációkat, „csomókat” jelöltek a Hold testében, ami miatt a gravitációs mezőben is anomáliák figyelhetők meg. Ez főként a Hold körüli pályán keringő űrhajók keringésében doppler mérésekkel észlelt rendellenességekből vezethető le. Nagyobb masconok a Hold innenső oldalán találhatóak, főként a nagy becsapódások, holdtengerek közelében, a túloldalon csak elszórtan és kisebb masconok vannak. (Ez utóbbi azonban csak nagyobb hibaszázalékkal elfogadott felfedezés, mivel a Hold túloldalán repülő űreszköz doppler-észlelésére nincs mód földi eszközökkel).

hold-5.jpg

 

A nagy becsapódásnyomokkal való egyezőség felveti a masconok eredetének egyszerű magyarázatát: a feltörő kemény (sűrű szerkezetű) kőzet, a bazalt nagy koncentrációban való jelenléte lehet a jelenség magyarázata. Azonban a legnagyobb bazalttenger, az Oceanus Procellarum esetében egyáltalán nincs jele gravitációs anomáliának, míg sok, kisebb csomónál sincsenek ilyen egyértelmű jelek (például nincs bazalt a környéken), ezért a maguknak a becsapódásoknak is nyilvánvaló közük lehet a tömegkoncentrálódásokhoz (ilyen lehet a becsapódó test holditól eltérő sűrűségű anyaga, vagy a becsapódás energiája által összepréselt kőzetek miatt).

A tömegcsomókat előszor a Lunar Orbiter szondák detektálták, amikor az Apollo-programhoz végeztek megfigyeléseket az emberes űrhajók pályájához, leszállásához szükséges számításokhoz. Legutoljára pedig a Lunar Prospector szállított adatokat kisebb, eddig felfedezetlen masconokról.

 

Forrás:https://hu.wikipedia.org/wiki/Hold 

 

 

 

 

 

 

Mágneses mezeje

A Földéhez hasonló mágneses mező létéről nem beszélhetünk, azonban gyenge, helyi jellegű mágneses terek megtalálhatók voltak a helyszíni vizsgálatok során. A Hold mágneses mezejének legfőbb jellemzője, hogy nem dipól jellegű (nincs globális északi és déli mágneses irány). Ez azt mutatja, hogy az olvadt kőzetet keringető mag kicsi és nem alakult ki vagy leállt benne a mágneses mezőt gerjesztő dinamó. A helyi mezők eredete ezért kérdéses. Az egyik elmélet szerint az égitest fejlődéstörtének elején még működött az a belső dinamóhatás, amely globális mágnesességet hozott létre, és a most megfigyelhető helyi mezők ennek a régen volt globális mezőnek a maradványai. Ezt azonban erősen kérdésessé teszi a Hold magjának kis mérete, azaz annak a lehetősége is igen kicsi, hogy a múltban nagyobb lehetett az olvadt anyag körforgásának „meghajtása”. Egy másik elmélet szerint a mágneses jelenségek inkább a becsapódásokhoz kapcsolódnak. Ennek az elméletnek azonban nincsenek a működési mechanizmusokat illető kidolgozott alapjai, csak az támasztja alá, hogy a mágneses területek sok esetben a nagy becsapódásokkal átellenben helyezkednek el a Hold testében.

hold-1.jpg

Forrás: https://hu.wikipedia.org/wiki/Hold

 

 

 

Hold

Földünk egyetlen természetes kísérője.

Földtől mért közepes távolság: 384,400 km 
átmérő: 3476 km 
tömeg: 7.35e22 kg

Luna a római mitológiában az éjjeli fény istennője.

 


Főbb témakörök: 
az első távcsöves megfigyelésektúlsó oldalaégboltjaholdfázisokfelszíni formáiholdkőzetek"Fogy, vagy növekszik?".


 

Hold keringési ideje 27,3 nap. Elliptikus keringési pályája folytán a Földtől mért távolsága a földközeli 356410 km és a földtávoli 406680 km között ingadozik. Ez több mint 10%-os ingadozást jelent. 

Saját tengelye körül ugyanannyi 
idő alatt fordul meg, mint amennyit Föld körüli keringése igénybe vesz, vagyis mindig ugyanazt az arcát (félgömbjét) mutatja a Föld felé. 
Ez a jelenség az úgynevezett 
kötött keringés

 

Holdat először egy szovjet űrszonda, a Luna-2 látogatta meg 1959-ben. 
Ember pedig először 1969. július 21-én 3 óra 56 perckor (
UTlépett a Hold felszínére Neil Armstrong személyében, aki az amerikai Apollo holdkutatási program egyik űrhajósa volt. 
A Hold az első idegen égitest amelyre az ember eljutott. 
"Ez kis lépés egy embernek, de óriási ugrás az emberiségnek." (
Neil Armstrong)

 

Az első távcsöves megfigyelések

Az első távcsöves megfigyelők kezdetleges műszereikkel a Hold sötét területeit tengereknek nézték, annak is nevezték el. 
Ezért mondjuk azokat ma is marenak (többes számban mariának), mert ez latinul tengert jelent; az egyik leghíresebb ilyen terület például a Mare Tranquillitatis, azaz a nyugalom tengere. 
Más kisebb sötét foltok a sinus (öböl), lacus (tó) vagy palus (mocsár, ingovány) nevet kapták.

Hold topográfiájának legfontosabb és legkülönösebb alakzatai azonban -mint azt már Galilei is megállapította- a hegységek és kisebb-nagyobb kráterek. Ezek a kráterek a legkülönbözőbb átmérőjűek lehetnek, a 800-1000 kilométeresektől -amilyen például a Mare Orientale- a néhány arasz átmérőjű gödröcskékig. Egy adott méretnél nagyobb holdkráterek száma rohamosan növekszik a méret csökkenésével. A csillagászok többsége úgy véli, hogy a gödrök és lyukak akkor keletkeztek, amikor meteoritok csapódtak be a Hold felszínére.

holdi tengerek talaja -összehasonlítva a felföldekével- viszonylag sima. Egészen bizonyos, hogy valamilyen folyékony (vagy képlékeny) anyag töltötte fel a területeket, miközben mélyen eltemette az elsődleges felszíni alakzatokat, amelyeknek ma csupán a csúcsai nyúlnak a tengerek alapszintje fölé. A látvány alapján általában lávafeltöltésekre lehet gondolni, s e nézetet a legtöbb csillagász támogatja is. Egyesek szerint a tengereket feltöltő anyag nem láva hanem por volt. Véleményük szerint a por a világűrből folyamatosan érkező meteoritok becsapódása során keletkezik a Hold felszíni kőzeteiből (regolit); ha a porrészecskék elektromos töltésre tennének szert, akkor úgy ugrálnának lefelé a lejtőkön és hegyoldalakon, mint a szöcskék, míg végül eljutnának a legalacsonyabban fekvő alföldekre, ahol évmilliók folyamán akár több kilométer vastagságú rétegeket is alkothatnának.

Forrás: http://www.vilaglex.hu/Csillag/Html/Hold.htm

 

 
 

 

Utolsó kép



Archívum

Naptár
<< Július / 2022 >>


Statisztika

Most: 1
Összes: 50977
30 nap: 573
24 óra: 20